

Basal metabolic Rate (BMR)

BMR

Basal metabolic rate

Definition: The minimum amount of energy per unit of time that a person needs to keep the body functioning at rest.

Unit: Kcal/h/m²

The conditions for BMR measurement

- 1. The subject must be on 12 h of caloric fasting
- 2. Not using medicine for a week before, especially medicines affecting the thyroid function
- 3. Restful night sleep
- 4. No activity must be allowed 1 h before the test
- 5. Mental status
- 6. Laboratory temperature (20-27 °C)

Factors that affect BMR

- Growth Hormone
- Cortisol
- Weather
- Sleep
- Fever
- Malnutrition

- Exercise and physical activity
- Age
- Protein consumption
- Thyroid hormone
- Sympathetic stimulation
- Male sex hormones

BMR measurement approaches

Direct calorimetry

Indirect calorimetry

 Measurement in our laboratory is based on indirect calorimetry and O₂ consumption

Direct calorimetry

Energy production

Anaerobic

Aerobic

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + Energy (38 ATP)$$

The uptake of 1 liter of oxygen is often converted into 4.825 kcal energy.

- 1- Breathing in a spirometer and determining the amount of consumed oxygen volume (V) in a certain period of time (M)
- 2- Determining the room temperature, atmospheric pressure, height, weight and age of the individual.

3- Using the following formula to convert laboratory conditions to conventional conditions and calculate V_0 :

$$PV=P_{o}V_{o}(1+\alpha t)$$

P= Pressure of O₂

V= Volume of consumed O_2

 P_0 = 760 mmHg

 $V_0 = O_2$ volume at standard conditions

 α = Gas volume expansion coefficient (1/273)

t = Room temperature

4- Calculating the heat produced

$$X = V_0 \times 4/825$$
 Kcal

5- Calculation in one hour

$$V_0 \times 4/825 \times 60 \, \text{min}$$
 Kcal/h

6- The obtained number/ Body surface in square meters

= BMR

7- Calculation of body surface area

7- Calculation of BMR percentage

Normal BMR values

Basal N	Metabolic	Rate - Id	eal Values
---------	-----------	-----------	------------

Age	Male (calories per hours)	Female (calories per hours)		
20-29 Years	39.5	37.0		
30-39 Years	39.5	36.5		
40-49 Years	38.5	36.5		
50-59 Years	37.5	35.0		
60-69 Years	36.5	34.0		
70-79 Years	35.5	33.0		
www.sprintmedical.in				

www.sprintmedical.in

Kcal/h/m²

An example test

Oxygen consumption = 1800 cc

Age = 30 years

Time = 5 minutes

Weight = 67 kg

Temperature = 17 °C

High = 165 cm

Pressure = 660 atm

Gender = Male

BMR?